In this thesis we have considered a cognitive radio network (CRN) with a pair of primary user (PU) and secondary user (SU) in spectrum sharing networks in path-loss and without path-loss propagation environments under identically distributed m-Nakagami fading channel.
The thesis consists of three parts. In the first part we propose an optimized Takagi-Sugeno Fuzzy Inference System (FIS) based power control strategy in cognitive radio networks (CRN) in spectrum sharing network in without path-loss propagation environment. The second part proposes an optimized Takagi-Sugeno FIS based power control strategy in cognitive radio networks in spectrum sharing network in path-loss propagation environment.
For without path-loss propagation environment the proposed FIS takes the interference channel gain ratio between SU transmitter (CUtx) and PU receiver (PUrx) and Signal to Noise Ratio (SNR) towards PU transmitter (PUtx) as antecedents and outputs the power scaling factor for SU. For path-loss propagation environment the proposed FIS takes the relative distance ratio between CUtx and PUrx and SNR towards PUtx as antecedents and outputs the power scaling factor for SU.
The output power scaling factor is used to vary the transmit power of SU such that it does not degrade the quality of service (QoS) of PU link. The third part presents an implementation of orthogonal frequency division multiplexing (OFDM) transmission technique in CRN. The OFDM technique has intellectual attractive features like coping with the inter symbol interference (ISI), while providing increasing spectral efficiency and improved performance. This can be used in emergency conditions where transmission requires reliability and high data rate.
The OFDM transmission technique is applied towards SU transmitter in CRN, which enables SU to utilize the spectrum efficiently under various fading environments. Spectrum sharing networks in with and without path-loss propagation environments and OFDM transmission were tested for bit error rate (BER) performance after fading effects from m-Nakagami fading channel.
We conclude that by applying Takagi-Sugeno Fuzzy Inference System (FIS) based power control strategy we can improve the BER performance of PU when compared with no power control strategy and with other fuzzy based power control technique. OFDM transmission technique gives us better data rate and slightly improved BER in CRN hence making it suitable for use in emergency conditions.
Source: Blekinge Institute of Technology
Authors: Bejjenki, Praneeth Kumar | Goraya, Muneeb Ahmed | Moid, Syed Fovad