Novel Integrated System Architecture for an Autonomous Jumping Micro-Robot (Robotics Project)

Get this Project:

Fields with * are mandatory

As the capability and complexity of robotic platforms continue to evolve from the macro to micro-scale, innovation of such systems is driven by the notion that a robot must be able to sense, think, and act.

The traditional architecture of a robotic platform consists of a structural layer upon which, actuators, controls, power, and communication modules are integrated for optimal system performance. The structural layer, for many micro-scale platforms, has commonly been implemented using a silicon die, thus leading to robotic platforms referred to as “walking chips”.

In this thesis, the first-ever jumping microrobotic platform is demonstrated using a hybrid integration approach to assemble on-board sensing and power directly onto a polymer chassis. The microrobot detects a change in light intensity and ignites 0.21mg of integrated nanoporous energetic silicon, resulting in 246µJ of kinetic energy and a vertical jump height of 8cm.
Source: University of Maryland
Author: Wayne A. Churaman

Download Project

Get this Project:

Fields with * are mandatory

Novel Integrated System Architecture for an Autonomous Jumping Micro-Robot (Robotics Project)” - 2 Comments

  1. dalbert said:

    good! We are getting close to the i-robot

  2. michael said:

    i really like the idea of a jumping robot.

Leave a Comment

Your email address will not be published. Required fields are marked *