There are two types of structures in human body, solid organs and hollow membrane like organs. Brain, liver and other soft tissues such as tendons, muscles, cartilage etc., are examples of solid organs. Colon and blood vessels are examples of hollow organs. They greatly differ in structure and mechanical behavior. Deformation of these types of structures is an important phenomena during the process of medical simulation.
The primary focus of this project is on deformation of soft tissues. These kind of soft tissues usually undergo large deformation. Deformation of an organ can be considered as mechanical response of that organ during medical simulation. This can be modeled using continuum mechanics and FEM. The primary goal of any system, irrespective of methods and models chosen, it must provide real-time response to obtain sufficient realism and accurate information.
One such example is medical training system using haptic feedback. In the past two decades many models were developed and very few considered the non-linear nature in material and geometry of the solid organs. TLED is one among them. A finite element formulation proposed by Miller in 2007, known as total Lagrangian explicit dynamics (TLED) algorithm, will be discussed with respect to implementation point of view and deploying GPU acceleration (because of its parallel nature to some extent) for both pre-processing and actual computation.
Source: Linköping University
Author: Kottravel, Sathish
>> 100+ Projects on Image Processing
>> Design, Modeling and Simulation Projects