Social Network Analysis Utilizing Big Data Technology (Computer Project)

Get this Project:

Fields with * are mandatory

As of late there has been an immense increase of data within modern society. This is evident within the field of telecommunications. The amount of mobile data is growing fast. For a telecommunication operator, this provides means of getting more information of specific subscribers.

The applications of this are many, such as segmentation for marketing purposes or detection of churners, people about to switching operator. Thus the analysis and information extraction is of great value. An approach of this analysis is that of social network analysis. Utilizing such methods yields ways of finding the importance of each individual subscriber in the network.

This study aims at investigating the usefulness of social network analysis in telecommunication networks. As these networks can be very large the methods used to study them must scale linearly when the network size increases. Thus, an integral part of the study is to determine which social network analysis algorithms that have this scalability. Moreover, comparisons of software solutions are performed to find product suitable for these specific tasks.

Another important part of using social network analysis is to be able to interpret the results. This can be cumbersome without expert knowledge. For that reason, a complete process flow for finding influential subscribers in a telecommunication network has been developed. The flow uses input easily available to the telecommunication operator.

In addition to using social network analysis, machine learning is employed to uncover what behavior is associated with influence and pinpointing subscribers behaving accordingly.
Source: Uppsala University
Author: Magnusson, Jonathan

Download Project

Get this Project:

Fields with * are mandatory

Leave a Comment

Your email address will not be published. Required fields are marked *