Structural topology optimization methods have existing and been improving theoretically since 1980s; however, in industry, with respect to the certain conditions, proper modification is always desired. This study develops a specific method to utilize topology optimization for gearbox housing design. Gearbox housing maintains the position of the shafts to ensure the precision of gear engagement in all operational states.
The current housing design processing used in Vicura AB, a Swedish powertrain company, is able to achieve stiff optimal housing material distribution, but difficult to fulfil gear misalignment requirement. This work overcomes the above shortages to develop a new methodology for gearbox housing topology optimization concerning the gear misalignment as well. The paper is starting with an introduction of the previous method and its defects, followed by a discussion of three possible improvements.
Only one of them is feasible and two main difficulties need to be resolved to make it applicable. One of the difficulties is finding a linear assumption of the non-linear components and the other is deriving an approach for topology optimization involving both external forces and non-zero prescribed displacements. The corresponding solutions are described subsequently in detail both theoretically and practically. Then the results by implementing the new method and also the comparison with the results getting from the old method are presented. Finally, a validation of the new method is discussed and the conclusions and comments are given.
Source: Linköping University
Author: Zhuang, Shengnan
>> Mechanical Projects based on Mechanics for Final Year Students